Calculate the following algebraic expressions.
(1) $7+2=(\quad)$
(2) $3+5=(\quad)$
(3) $5+4=(\quad)$
(4) $6+3=(\quad)$
(5) $4+4=(\quad)$
(6) $2+6=(\quad)$
(7) $5+3=(\quad)$
(8) $1+3=(\quad)$
(9) $3+4=(\quad)$
(10) $5+2=(\quad)$
(11) $7+I=(\quad)$
(12) $3+3=(\quad)$
(13) $I+8=(\quad)$
(14) $2+3=(\quad)$
(15) $2+2=(\quad)$
(16) $5+I=(\quad)$
(17) $2+5=(\quad)$
(18) $4+5=(\quad)$
(19) $3+6=(\quad)$
(20) $4+2=(\quad)$

Calculate the following algebraic expressions.
(1) $4-3=(\quad)$
(2) 5-4 = ()
(3) 6-1 = ()
(4) 3-2 $=(\quad)$
(5) 7-2 = ()
(6) $4-\mathrm{I}=(\mathrm{O}$
(7)9-I =()
(8) 6-3 = ()
(9) 8-4 = ()
(10) 7-4 = ()
(11) $8-\mathrm{I}=(\mathrm{l}$
(12) $9-8=(\quad)$
(13) $2-\mathrm{I}=(\mathrm{l}$
(14) $7-5=(\quad)$
(15) 5-2 $=(\quad)$
(16) $8-5=(\quad)$
(17) 6-2 = ()
(18) $9-2=(\quad)$
(19) 9-7 = ()
(20) 7-6=()

Calculate the following algebraic expressions.
(1) $8+6=(\quad)$
(2) $6+4=(\quad)$
(3) $7+5=(\quad)$
(4) $9+3=(\quad)$
(5) $8+4=(\quad)$
(6) $5+6=(\quad)$
(7) $3+7=(\quad)$
(8) $4+8=(\quad)$
(9) $9+5=(\quad)$
(10) $6+6=(\quad)$
(11) $7+6=(\quad)$
(12) $5+5=(\quad)$
(13) $5+8=(\quad)$
(14) $6+9=(\quad)$
(15) $2+8=(\quad)$
(16) $4+7=(\quad)$
(17) $7+5=(\quad)$
(18) $8+8=(\quad)$
(19) $4+9=(\quad)$
(20) $5+9=(\quad)$

Calculate the following algebraic expressions.
(1) $12-8=(\quad)$
(2) 18-9 = ()
(3) $15-6=(\quad)$
(4) $10-3=(\quad)$
(5) $13-5=(\quad)$
(6) $11-6=(\quad)$
(7) 16-7 = ()
(8) $11-8=(\quad)$
(9) 14-6=()
(10) $10-8=(\quad)$
(11) $13-6=(\quad)$
(12) $16-9=(\quad)$
(13) $17-9=(\quad)$
(14) $12-3=(\quad)$
(15) $13-8=(\quad)$
(16) $11-4=(\quad)$
(17) $12-9=(\quad)$
(18) $14-7=(\quad)$
(19) $12-6=(\quad)$
(20) $15-9=(\quad)$
athgic
P1: addition between 2-digit numbers and 1-digit numhers
Calculate the following algebraic expressions.
(1) $1+16=(\quad)$
(2) $8+12=(\quad)$
(3) $23+6=(\quad)$
(4) $35+4=(\quad)$
(5) $54+5=(\quad)$
(6) $46+2=(\quad)$
(7) $18+7=(\quad)$
(8) $32+9=(\quad)$
(9) $26+5=(\quad)$
(10) $47+7=(\quad)$
(11) $59+9=(\quad)$
(12) $6 I+8=(\quad)$
(13) $83+7=(\quad)$
(14) $34+3=(\quad)$
(15) $19+7=(\quad)$
(16) $38+3=(\quad)$
(17) $52+3=(\quad)$
(18) $7 I+8=(\quad)$
(19) $27+6=(\quad)$
(20) $54+4=(\quad)$

Calculate the following algebraic expressions.
(2) 27-9 = ()
(3) $14-3=(\quad)$
(4) $42-\mathrm{I}=(\mathrm{O}$
(5) $37-6=(\quad)$
(6) $61-6=(\quad)$
(7) 56-7 = ()
(8) $19-8=(\quad)$
(9) 74-6 = ()
(10) 72-2 = ()
(11) 58-6=()
(12) $86-3=(\quad)$
(13) $15-5=(\quad)$
(14) 23-5 = ()
(15) $30-4=(\quad)$
(16) $91-9=(\quad)$
(17) 65-7 = ()
(18) $37-7=(\quad)$
(19) 94-7 = ()
(20) $32-8=(\quad)$

P1: addition between 2-digit numbers and 1 -digit numhers
Calculate the following algebraic (1) $15+2 j^{2}$.

	tens	unit s
	1	5
+	2	3

(3) $32+18$
(4) $64+27$

	tens	unit s
	$\mathbf{3}$	$\mathbf{2}$
$\mathbf{+}$	$\mathbf{1}$	$\mathbf{8}$

(5) $23+19$

	tens	unit s
	2	3
+	1	9

	tens	unit s
	$\mathbf{4}$	$\mathbf{6}$
+	2	6

	tens	unit s
	$\mathbf{6}$	$\mathbf{4}$
+	$\mathbf{2}$	$\mathbf{7}$

(6) $46+26$

Word problems.
(1) My sister has 23 pieces of chocolate. Her brother has 5 pieces less than her. How many pieces of chocolate does her brother have?
(2) Kate has 28 candies. She has 9 candies more than Cindy. How many candies does Cindy have?
(3) Cherry has 16 oranges. She ate 6 oranges. How many oranges does she have left?

Word problems.

(4) Karl has $\$ 56$, which is $\$ 32$ less that Cherry. How much does Cherry have?
(5) Lily has 32 roses. She gives II roses to Wendy. How many roses does Lily have left?
(6) Gigi has 52 candies. She has 18 candies less than Tracy. How many candies does Tracy have?

Fill in the blank with appropriate numbers.
(1) 2,5,(),II,I4,()
(2) (), II, 9, 7, ()
(3) $32,28,(\quad),(\quad), 16,(\quad)$
(4) $18,(\quad), 14,12,(\quad)$
(5) $4,5,7,8,10,11,(\quad),(\quad)$
(6) $20,18,(\quad),(\quad), I 2$
(7) $8,1 \mathrm{I}, 14,(\quad), 20,(\quad)$
(8) $5,10,15,(\quad),(\quad)$
(9) $27,25,(\quad),(\quad), 19$
(10) $I, 2,4,7, I I,(\quad),(\quad)$

